378 CHAPTER 10. TURBULENT VISCOSITY MODELS

basic description of the mean velocity profiles in self-similar free shear flows.
However, it is an incomplete model with a very limited range of applicability.

10.2.2 Mixing-Length Model

In application to two-dimensional boundary layer flows, the mixing length
Lm(z,y) is specified as a function of position, and then the turbulent viscosity
is obtained as
M‘ . (10.19)
dy

As shown in Section 7.1.7, in the log-law region, the appropriate specification
of the mixing length is /,, = ky, and then the turbulent viscosity is v, =
UrKY-

Several generalizations of Eq. (10.19) have been proposed to enable the
application of the mixing-length hypothesis to all flows. Based on the mean
rate-of-strain S;; Smagorinsky (1963) proposed

v =02,

VUp = 63,1(25'”5'”)% = ean, (10.20)

whereas, based on the mean rate-of-rotation Q;; Baldwin and Lomax (1978)
proposed
1
v = 02,(29;;Q)2 = 2.Q. (10.21)

(Both of these formulae reduce to Eq. 10.19 in the case that 9(Uy)/0zq is
the only non-zero mean velocity gradient.)

In its generalized form, the mixing-length model is applicable to all tur-
bulent flows, and it is arguably the simplest turbulence model. Its major
drawback, however, is incompleteness: the mixing length £,,(x) has to be
specified, and the appropriate specification is inevitably dependent on the
geometry of the flow. For a complex flow that has not been studied be-
fore, the specification of ¢,,(x) requires a large measure of guesswork, and
consequently one should have little confidence in the accuracy of the re-
sulting calculated mean velocity field. On the other hand, there are classes
of technologically-important flows which have been studied extensively, so
that the appropriate specifications of £,,(x) are well established. The prime
example is boundary-layer flows in aeronautical applications. The Cebeci-
Smith model (Smith and Cebeci 1967) and the Baldwin-Lomax model (Bald-
win and Lomax 1978) provide mixing-length specifications that yield quite
accurate calculations of attached boundary layers. Details of these models
and their performance are provided by Wilcox (1993).
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As illustrated in the following exercise, the mixing-length model can also
be applied to free shear flows. The predicted mean velocity profile agrees
well with experimental data (see, e.g., Schlichting 1979). An interesting
(though non-physical) feature of the solution is that the mixing layer has
a definite edge at which the mean velocity goes to the free-stream velocity
with zero slope but non-zero curvature.

Exercise 10.2 Consider the self-similar temporal mixing layer in which
the mean lateral velocity (V) is zero, and the axial velocity (U) depends
only on y and ¢. The velocity difference is Us, so that the boundary
conditions are (U) = +4U; at y = +oo. The thickness of the layer
§(t) is defined (as in Fig. 5.21 on page 145) such that (U) = £2U; at
y= :I:%(S.

The mixing-length model is applied to this flow, with the mixing length
being uniform across the flow and proportional to the flow width, i.e.,
ln = ad, where a is a specified constant.

Starting from the Reynolds equations

oU) A{uv)
— = 10.22
5 oy (10.22)
show that the mixing length hypothesis implies:
o(U) 250 0(U) 0*(U)
— =2 —_ . 10.2
5 a”d 9y 0y (10.23)

Show that this equation admits a self-similar solution of the form (U) =
Usf(&), where £ = y/§; and that f(&) satisfied the ordinary differential
equation

—SEf =222 f", (10.24)
where S = U, 'dd/dt is the spreading rate.
Show that Eq. (10.24) admits two different solutions (denoted by fi

and fy):
_ S 3
hi=-158 + A+ B, (10.25)
and
f2=0C, (10.26)

where A, B and C are arbitrary constants.

The appropriate solution for f is made up of three parts. For || greater
than a particular value £*, f is constant (i.e., f2):

f=-1

for &< —=&*,

for &6 (10.27)
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Show that the appropriate solution for —&* < £ < &£* satisfying f'(+&*) =

0is 5
_3& 1/7¢
f= 1e- 1 <€*> . (10.28)
Show that the spreading rate is related to the mixing-length constant
by
S = 3a%/¢" (10.29)

and use the definition of § (i.e., f () = £) to obtain
& =~ 0.8450. (10.30)

How does v, vary across the flow?

10.3 Turbulent Kinetic Energy Models

With the turbulent viscosity written as
vp = U, (10.31)

in the mixing-length model the lengthscale is £* = £,,, and the velocity scale
is (in simple shear flow)

«_, |9)
u _ém‘ 3 ‘ (10.32)

The implication is that the velocity scale is locally determined by the mean
velocity gradient; and, in particular, u* is zero where 9(U)/0y is zero. In
fact, contrary to this implication, there are several circumstances where the
velocity gradient is zero and yet the turbulent velocity scale is non-zero. One
example is decaying grid turbulence; another is the center-line of the round
jet where direct measurement shows v to be far from zero (see Fig. 5.10 on
page 111).

Independently, Kolmogorov (1942) and Prandtl (1945) suggested that it
is better to base the velocity scale on the turbulent kinetic energy, i.e.,

u* = ck?, (10.33)

where ¢ is a constant. If the lengthscale is again taken to be the mixing
length, then the turbulent viscosity becomes

vp = ck3 b, (10.34)
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As shown in Exercise 10.3, the value of the constant ¢ ~ 0.55 yields the
correct behavior in the log-law region.

In order for Eq. (10.34) to be used, the value of k(x,?) must be known
or estimated. Kolmogorov and Prandtl suggested achieving this by solving
a modelled transport equation for k. This is called a one-equation model,
because a modelled transport equation is solved for just one turbulence
quantity, namely, k.

Before discussing the modelled transport equation for k, it is helpful to
itemize all the components of the model:

(i) the mixing length £,,(x,t) is specified
(ii) a modelled transport equation is solved for k(x,t)
(iii) the turbulent viscosity is defined by v, = ck2ly,

(iv) the Reynolds-stresses are obtained from the turbulent viscosity hy-
pothesis, Eq. (10.1)

(v) the Reynolds equations are solved for (U(x,t)) and (p(x,1)).

Thus, from the specification of ¢, and from the solutions to the exact and
modelled equations, the following fields are determined: (U), (p), &m, k, vr
and (u;u;). These are referred to as “knowns.”

We now consider the modelled transport equation for k. The exact
equation (Eq. 5.132) is

Dk 0Ok
= V- T +P—¢, (10.35)

where the flux T/ (Eq. 5.140) is

T! = %(ulujuj) + (uip')/p — 2v(ujs;j). (10.36)

7

In Eq. (10.35), any term that is completely determined by the “knowns” is
said to be “in closed form.” Specifically, Dk/Dt and P are in closed form.
Conversely, the remaining terms (¢ and V-T") are “unknown”; and, in order
to obtain a closed set of model equations, these terms must be modelled.
That is, “closure approximations” are required that model the unknowns in
terms of the knowns.

As discussed extensively in Chapter 6, at high Reynolds number the
dissipation rate ¢ scales as ug /fo, where ug and £y are the velocity and length
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scales of the energy-containing motions. Consequently, it is reasonable to
model € as
3
e =Cpkz/[ly, (10.37)

where C'p is a model constant. Indeed, an examination of the log-law region
(Exercise 10.3) yields this relation with Cp = ¢3.

Modelling assumptions such as Eq. (10.37) deserve close scrutiny. Equa-
tions (10.34) and (10.37) can be combined to eliminate £,, to yield

vr = cCpk? /e, (10.38)

or, equivalently,
120

k2
For simple shear flows, k, ¢ and vy = —(uv)/(0(U)/0y) can be measured,
so that this modelling assumption can be tested directly. Figure 10.3 shows
the left-hand side of Eq. (10.39) extracted from DNS data of fully-developed
turbulent channel flow. It may be seen that (except close to the wall, y* <
50) this quantity is indeed approximately constant, with a value around
0.09. Figure 10.4 shows the same quantity for the temporal mixing layer:
except near the edges, the value is everywhere close to 0.08.
The remaining unknown in the turbulent kinetic energy equation is the
energy flux TV (Eq. 10.36). This is modelled by a gradient diffusion hypoth-
esis as

= cCp. (10.39)

T = -2y, (10.40)
Ok
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where the “turbulent Prandtl number” for kinetic energy' is generally taken
to be o = 1.0. Physically, Eq. (10.40) asserts that (due to velocity and
pressure fluctuations) there is a flux of k£ down the gradient of k. Mathe-
matically, the term ensures that the resulting modelled transport equation
for k yields smooth solutions, and that a boundary condition can be imposed
on k everywhere on the boundary of the solution domain.

In summary, the one-equation model based on k consists of the modelled
transport equation -

Dh_g. <V—TVI<:) +P—¢ (10.41)
Dt Ok
with vy = ck?2£,, and & = Cpk3 /4., together with the turbulent viscosity
hypothesis (Eq. 10.1) and the specification of 4,,.

A comparison of model predictions with experimental data (Wilcox 1993)
shows that this one-equation model has a modest advantage in accuracy over
mixing-length models. But the major drawback of incompleteness remains:
the length scale ¢,,,(x) must be specified.

Exercise 10.3 Consider the log-law region of a wall-bounded flow.
Use the log-law and the specification ¢,,, = ky to show that the appro-

!The symbol o}, is standard notation. Note, however, that oy, is a scalar, and that “k”
is not a suffix in the sense of Cartesian tensor suffix notation.



